On the bounds and achievability about the ODPC of $\mathcal{GRM}(2, m)^*$ over prime field for increasing message length

نویسندگان

  • Xiaogang Liu
  • Yuan Luo
چکیده

The optimum distance profiles of linear block codes were studied for increasing or decreasing message length while keeping the minimum distances as large as possible, especially for Golay codes and the second-order Reed-Muller codes, etc. Cyclic codes have more efficient encoding and decoding algorithms. In this paper, we investigate the optimum distance profiles with respect to the cyclic subcode chains (ODPCs) of the punctured generalized second-order Reed-Muller codes GRM(2,m) which were applied in Power Control in OFDM Modulations in channels with synchronization, and so on. For this, two standards are considered in the inverse dictionary order, i.e., for increasing message length. Four lower bounds and upper bounds on ODPC are presented, where the lower bounds almost achieve the corresponding upper bounds in some sense. The discussions are over nonbinary prime field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper bounds on the solutions to n = p+m^2

ardy and Littlewood conjectured that every large integer $n$ that is not a square is the sum of a prime and a square. They believed that the number $mathcal{R}(n)$ of such representations for $n = p+m^2$ is asymptotically given by begin{equation*} mathcal{R}(n) sim frac{sqrt{n}}{log n}prod_{p=3}^{infty}left(1-frac{1}{p-1}left(frac{n}{p}right)right), end{equation*} where $p$ is a prime, $m$ is a...

متن کامل

A scheme over quasi-prime spectrum of modules

The notions of quasi-prime submodules and developed  Zariski topology was introduced by the present authors in cite{ah10}. In this paper we use these notions to define a scheme. For an $R$-module $M$, let $X:={Qin qSpec(M) mid (Q:_R M)inSpec(R)}$. It is proved that $(X, mathcal{O}_X)$ is a locally ringed space. We study the morphism of locally ringed spaces induced by $R$-homomorphism $Mrightar...

متن کامل

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

Sums of Strongly z-Ideals and Prime Ideals in ${mathcal{R}} L$

It is well-known that the sum of two $z$-ideals in $C(X)$ is either $C(X)$ or a $z$-ideal. The main aim of this paper is to study the sum of strongly $z$-ideals in ${mathcal{R}} L$, the ring of real-valued continuous functions on a frame $L$. For every ideal $I$ in ${mathcal{R}} L$, we introduce the biggest strongly $z$-ideal included in $I$ and the smallest strongly $z$-ideal containing ...

متن کامل

On the Optimum Cyclic Subcode Chains of $\mathcal{RM}(2,m)^*$ for Increasing Message Length

The distance profiles of linear block codes can be employed to design variational coding scheme for encoding message with variational length and getting lower decoding error probability by large minimum Hamming distance. Considering convenience for encoding, we focus on the distance profiles with respect to cyclic subcode chains (DPCs) of cyclic codes over GF (q) with length n such that gcd(n, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1307.0927  شماره 

صفحات  -

تاریخ انتشار 2013